

Trabajo de investigación sobre metodología B.I.M en el sector de la construcción

Reseach about the application of B.I.M methodology in building

Autor: Lucía Citoler Berdala

Director: Jose Ángel Pérez Benedicto

Fecha: 13 de Septiembre de 2016

RESUMEN Y OBJETIVO:

El objetivo de este trabajo final de grado es presentar una nueva visión de la construcción a través de la metodología BIM. Para ello este trabajo se ha adentrado en la parametrización y realidad virtual dos ámbitos totalmente en auge en la actualidad por sus grandes ventajas frente a la metodología anterior. Se aplicarán ejemplos prácticos en ambos sectores explicando y desarrollando los problemas obtenidos.

ARSTRACT.

The objective of this work is bringing the reader a new of building through the BIM methodology. This work tries to explain parameterization and virtual reality two areas totally booming nowadays for its great advantages over the previous methodology. Practical examples will be applied in both sectors explaining and developing the problems found during the process of investigation.

METODOLOGÍA:

Se plantea hacer una búsqueda de información inicial para averiguar cuál es

A su vez, se plantea realizar un caso práctico por cada tema (parametrización y realidad virtual) para lograr una mayor comprensión del tema elegido y poder concluir con un discurso sobre la utilización de dicha metodología en estos ámbitos con la suficiente experiencia.

1. PARAMETRIZACIÓN

CASO PRÁCTICO 1: TORRE PARAMÉTRICA

Este ejercicio se ha realizado con el programa Revit 2015 y su plugin de programación Dynamo 1.0.0

Descripción del ejercicio: se elaborara un edificio que se basa en una planta poligonal donde el número de lados del poligono está parametrizada al igual que radio que inscribe al poligono. Esta planta se eleva girando conforme a una helice en la cual puede modificarse el paso de la misma. Se realizan dos tipologías diferentes de estructura según el radio de la circunferencia circunscrita en el poligono. Este proceso será un proceso automatizado, de tal modo que se ejecutará el tipo de estructura que le corresponda.

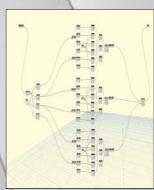
Parámetro que puede modifi- carse	Rango
Número de niveles en Revit	Según diseño
Distancia de niveles en Revit	Según diseño
Radio del circulo donde se inscribe el polígono	515
Número de vértices del polí- gono	316
Distancia interior del circulo	0,5
Paso de la hélice	-
Elección de tipología según el radio interior	13
Tipología de estructura 1. Distancia entre pilares	510
Tipología de estructura 2. Distancia de malla	48
Tipo de pilar	Según diseño
Tipo de forjado	Según diseño
Altura placa muro cortina	-
Ancho placa muro cortina	-
Tipología muro cortina	-
Colocación del sol	0,-50,100
Colores de análisis solar	-

Tabla de elementos con valores paramétricos en la torre.

Además el cerramiento exterior se compone por un muro cortina acristalado con paneles triangulares. Cada placa tendrá diferentes prestaciones de aislamiento, acústico, solar o de seguridad según su colocación y distancia al sol. El análisis solar ayudará a evitar el sobrecalentamiento de las placas de muro cortina en zonas de exposición evitando así la transmisión directa de radiación solar, y ayudando a evitar el efecto de "pared fria" en lugares no expuestos al sol.

Render de la torre.

Análisis solar de cada plac


CASO PRÁCTICO 2: CREACIÓN DE NODO

Este ejercicio se ha realizado por la necesidad de creación de un nodo que facilite la comprensión y que pueda ser usado con posterioridad sin la necesidad de volver a crear la operación.

El objetivo de este nodo es la realización de una circunferencia inscrita en un polígono de número de lados, tamaño y posición cualesquiera.

Para ello será necesario obtener 4 vértices del poligono, hallar el punto medio de la distancia entre punto1 y punto 2; punto 2 y punto3; punto 3 y punto 4.

Una vez obtenidos los 3 puntos medios, se obtiene una circunferencia que pase por esos tres puntos. De modo que esa circunferencia es la que inscribe al poligono nombrado.

CASO PRÁCTICO 2: CREACIÓN NODO

CASO PRÁCTICO 1: NODOS PARA LA CREACIÓN DE LA TORRE

- ⇒ Automatización de procesos
 - Automatización de procesos
- \Rightarrow Control y gestión de obra
- > Optimización de recursos

CONCLUSIÓN DEL USO DE LA PARAMETRIZACIÓN EN LA CONSTRUCCIÓN

- ⇒ Eliminación de errores humanos
- ⇒ Simulaciones

⇒ Diseños compleios

2. REALIDAD VIRTUAL

REALIZACIÓN DE PANORAMAS 360° CON DIFERENE SOFTWARE

Usos de la realidad virtual en el sector de la construcción

- ⇒ Herramienta de marketing
- ⇒ Reproducción de lugares valiosos
- Reproducción de proyecto de interiorismo a modo de configurador
- ⇒ Estudios solares, estructurales sometidos a diferentes esfuerzos, colocación de tuberías
- ⇒ Mantenimiento y control del edificio.

Se han realizado dos panoramas 360 a partir de un modelo BIM. En la tabla siguiente se enumeran las diferencias entre ambos programas.

	Revit A360 Rendering	3D Max
Renderización	Desde la nube	Desde tarjeta gráfica del orde- nador
Calidad	Media	Alta
Tiempo de renderiza- ción (calidad baja)	10 minutos	15 minutos
Dificultad	Medio	Alta
Personalización de acabados	Medio	Alta
Potencia del ordena- dor mientras renderi- za	Total	Depende de la tarjeta gráfica y procesador del ordenador
Visualización	En la nube, desde link o código QR	Archivo .mov
Visualización sin conexión internet	No	Si

TABLA COMPARATIVA DE RENDERIZACIÓN PANORÁ-

PLANTA DONDE SE REALIZA LA PANORÁMICA 36

Escanea los códigos QR y ponte las gafas de realidad virtual.