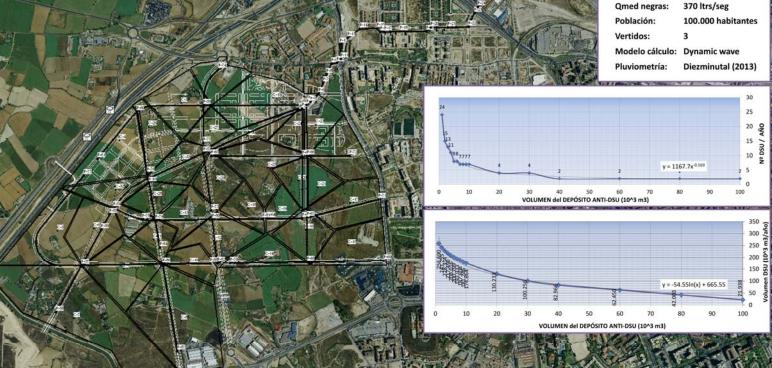


DIMENSIONAMIENTO de TANQUES de TORMENTA según NUEVOS ESTÁNDARES de DISEÑO

Chami Masip, Omar


INTRODUCCIÓN OBJETIVOS

- El desarrollo urbanístico y crecimiento de las ciudades desde los años 60 ha puesto de manifiesto que una de sus consecuencias es la contribución de las redes de alcantarillado a la degradación de la calidad de las aguas de los medios receptores.
- En cualquier proceso de lluvia no demasiado fuerte puede producirse una descarga del sistema de alcantarillado unitario (DSU) al medio receptor fuertemente intensa en contaminantes por arrastre o limpieza de las redes de saneamiento unitarias y por el primer lavado superficial (first flush) de la cuenca urbana.
- La Directiva Marco del Agua (Directiva 2000/60/CE) ha involucrado a los países comunitarios hacia la protección y mejora de la calidad de las aguas de los medios receptores.
 - **METODOLOGÍA**
- Descripción de la tipología de depósitos y clasificación estos según su función.
- Descripción sistemas de dimensionamiento de depósitos anticontaminación (métodos franceses, suizo, italiano, austriaco, Norma ATV-128,...).
- Disposiciones constructivas del depósito y obras complementarias.
- Creación de un modelo de una red de saneamiento con SWMM5 con serie de precipitaciones anual para cálculo en periodo extendido.
- Evaluación de la contaminación producida por una DSU sin y con depósito en el sistema.

- 1. Exponer la problemática de los reboses de los sistemas unitarios de alcantarillado.
- Realizar una síntesis de la normativa y métodos existentes en el marco de la CEE sobre dimensionamiento de tanques de tormentas.
- Definir una metodología que facilite el diseño de los tanques de tormentas como dispositivos anticontaminación a partir de un modelo de cálculo adaptado a las características de intrínsecas de una red de saneamiento.
- Realizar un proceso de simulaciones iterativas en periodo extendido para obtener un volumen de retención óptimo que ofrezca una reducción de vertidos y frecuencia de los mismos
- Caracterizar el volumen de emisión de los contaminantes vertidos al medio receptor y calcular la eficacia del depósito como estructura anticontaminación.
- Contrastar los resultados obtenidos del modelo con los volúmenes resultantes de la metodología y normativa europea recopilada en este TFG.

ESQUEMA SANEAMIENTO

SWMM5 Modelo: Superficie: 267.42 Has 33 unidades Subcuencas 87 unidades Nudos : 87 unidades Conductos: Aliviaderos: 3 unidades Depósito: 1 unidad 1 unidad Bombeo:

550 -	521.982 521.939 522.019	2882	521.883 522.007 521.953	\$21.973 \$22.089 \$21.984	1.931	522.017	522.037	1000	21.868	521.99	521.953 521.953 521.953 521.894	2.048	1.769	1.967	1.988	04400 04400 04400 04400	522.007	521.973	521.461	521.96
	*** **		\$ 55	*** *	\$	÷	\$ **	****	•	**	****	• 52	÷ 25	÷	• 25	***	\$ 100 m	* 52	* *	\$ 050 • • •
450 -	480,25 × 480,74 × 485,58 × 664,33 ×	244 XXX	×××	××××		×	x x	Acc God XX	×	×	4749045 × 436.09 × 462.80 × 471.53 ×		× 517	× 08	×	× 25.57 ×	×	×	.48 ×	× × 4
400	480.7 480.7 485.7	9226	479.94 487.71	54.30 464.39 473.8	×	456.37	481.31 464.85 × 483.59	64.48849	472.6	470.58 9.21 ×	4749 486 462.80 471.5	5.70 ×	492	478.3	465.75	451.68 * 454.21 454.27	459 73 ×	465.91	492	476.71
350			4		428			402.24		439		4				-		4		
300 -		_	_									+						4	330.13 ×	
	5		m				m	1			į.	a						n	m	d

Método	Volumen depósito (m3)	Volumen DSU (10^3 m3/año)	Nº DSU año	SS en DSU (Tn /año)
Francés. Lluvia crítica	2.700	238,90		38,738
Francés. Caudales	2.100	252,47		41,022
Reino Unido	2.300	247,55		40,195
Confederación. H. Norte	1.600	267,15		43,495
Alemán, ATV-128	2.050	253,77		41,242
Suizo	3.300	228,06		36,913
Austriaco. Vol. Mínimo.	2.000	255,10		41,466
Austriaco. Vol. Medio.	3.000	233,21	12	37,780
Austriaco. Vol. Máximo.	5.900	196,68		31,630
Italiano	6.600	190,63		30,611
promedio		236,40	12,7	38,309
Método iterativo	40.000	93,33		14,229
Sin depósito		729,94	48	185,216

CONCLUSIONES

- El diseño de un tanque de retención debe considerarse como una herramienta para alcanzar un estándar de calidad asociado al medio hídrico receptor.
- El estándar de calidad es el objetivo mientras que las actuaciones son las medidas para conseguirlo y son específicas y dependientes de las condiciones morfológicas de la cuenca, de la climatología de la zona y de las condiciones características del medio receptor. El método de cálculo debe tener en cuenta estos condicionantes para determinar un volumen óptimo de depósito anti-DSU que permita durante su explotación, la gestión de las descargas y el control sistemático de la calidad.